Your attention is drawn to the section on Risk Assessment on page 17 of the Introduction to this booklet, and to the hazards indicated in Appendices 1 and 2. While all effort has been made to ensure that appropriate safety indications are given, CIE accepts no responsibility for the safety of these experiments and it is the responsibility of the teacher to carry out a full risk assessment for each experiment undertaken, in accordance with local rules and regulations. Hazard data sheets should be available from your suppliers.
Contents

Introduction 1
Why should I read this booklet? 1
How much teaching time should I allocate to practical work? 1
Can I use the practicals in these booklets in a different order? 1
What resources will I need? 2
Is there a limit to the class size? 2
Why should I teach my students practical skills? 2
Points to consider 2
What are the practical skills required by this course? 4
Summary of each of the seven skills 5
Ways of doing practical work 9
Keeping records 12
How is a practical activity organised? 13
Risk assessment 15
Eye protection 17
AS Skills 18
Teaching students to manipulate, measure and observe 18
Teaching students to present data and record observations 18
Teaching students to analyse, draw conclusions and evaluate 19
Appendix 1 - Designing a practical course for AS 20
Syllabus section A – Cell Structure 21
Syllabus section B – Biological Molecules 21
Syllabus section C – Enzymes 22
Syllabus section D – Cell Membranes and Transport 23
Syllabus section E – Cell and nuclear division 24
Syllabus section F – Genetic Control 24
Syllabus section G – Transport 24
Syllabus section H – Gas Exchange 25
Syllabus Section I – Infectious disease 26
Syllabus Section J – Immunity 26
Syllabus Section K – Ecology 26
Appendix 2 – practicals for which full details are provided 27
Practical 1 - Investigation into size and scale of microscopic tissues 27
Practical 2 - Microscopic observation of cells and tissues 33
Practical 3 - The identification of biological chemicals present in solutions 40
Practical 4 - Investigation of the carbohydrates metabolised by yeast 45
Practical 5 - The effect of pH on enzymes 51
Practical 6 - The effect of inhibitors on enzyme activity 57
Practical 7 - The effect of temperature on membrane permeability in beetroot 62
Practical 8 - Broad bean root tip squash 67
Practical 9 - The extraction of DNA from onions 73
Practical 10 - The effect of wind speed on the rate of transpiration in a leafy shoot 78
Practical 11 - Investigating the role of carbon dioxide in living organisms. 86
Introduction

You may have been teaching AS and A level biology for many years or perhaps you are new to the game. Whatever the case may be, you will be keen to ensure that you prepare your students as effectively as possible for their examinations. The use of a well-structured scheme of practical work will certainly help in this ambition. However it can do so much more. Scientists who are thoroughly trained and experienced in practical skills, will have a ‘feel’ for the subject and a confidence in their own abilities that is far greater above those with a purely theoretical background. It is true that there are branches of biology that might be described as purely theoretical but they are in the minority. Essentially, biology is a practical subject and we owe it to our students to ensure that those who pursue science further have the necessary basic practical skills to take forward into their future careers. Furthermore, the basic skills of planning, analysis and evaluation will be of great value to those who pursue non-science careers.

Why should I read this booklet?

Some of you may be wondering why you should need a booklet like this. If your practical skills are of a high order and you feel confident teaching these skills to others, you probably don’t need it; but you might find some of the exercises described in the appendices useful. However, if you are like the majority of us, a little help and support is likely to be appreciated. This booklet aims to provide at least some of this support.

It is designed for the teacher rather than for the student. Its objective is to provide a framework within which the practical skills of teachers can develop and grow. Experience shows that as a teacher’s practical skills grow, so too do the confidence to teach such skills and the time that you will be prepared to spend on teaching practical work.

How much teaching time should I allocate to practical work?

The syllabus stipulates that at least 20% of teaching time should be allocated to practical work. This is in addition to any time the teacher chooses to use for practical demonstrations to illustrate the theory syllabus. This emphasis on practical work is not misplaced. Consider the weighting given to assessment objectives in the syllabus: 24% is allocated to experimental skills and investigations and 30% is allocated to handling, applying and evaluating information. Taken together, 55% of the total award is related to a students’ ability to interpret data, understand how this has been obtained, recognise limitations and suggest explanations; all of which lend themselves to investigative work involving practical experience. If the specific practical papers are considered in isolation, they still represent 23% of the AS and 24% of the A Level award.

In planning a curriculum, teachers should therefore expect to build in time for developing practical skills. If, for example, the time allowed is 5 hours per week over 35 weeks, then a minimum of 1 hour per week should be built into the plan, so that over the year, a minimum of 35 hours is made available. Bearing in mind the emphasis on assessment objectives that related to information handling and problem solving, a minimum of 2 hours per week might be more appropriate, which at 40% of the time is still less than the overall weighting for these assessment objectives.

Can I use the practicals in these booklets in a different order?

It is assumed in these booklets that for A level candidates, the AS work will be taught in the first year of the course, with the A2 work being covered in the second year. If the linear A Level assessment route is used, care should be taken with regard to in the
order in which practical exercises are used, as the skills practiced in these booklet are hierarchical in nature, i.e. the basic skills established in the AS booklet are extended and developed in the A2 Level booklet. Thus, students will need to have practiced basic skills using AS exercises before using these skills to tackle more demanding A Level exercises.

The exercises in these booklets are given in syllabus order. A teacher may well decide to use a different teaching sequence, but the point made above, regarding AS/A2 exercises, still applies.

What resources will I need?

For a practical course in A-level Biology to be successful, it is not necessary to provide sophisticated equipment. Some of the more advanced practicals in these booklets may require less easily obtainable equipment, but the vast majority can be performed using the basic equipment and materials in the lab. Alternative ‘low-tech’ exercises are also provided where possible.

A list of the basic resources required for assessment may be found in the syllabus. A more detailed list may be found in the booklet ‘CIE Planning For Practical Science in Secondary Schools’, Appendix B.

Is there a limit to the class size?

It is true that there is a limit to the class size that is manageable in a laboratory situation, particularly when students may be moving about. The actual size may be determined by the size of the room, but as a general guide, 15 - 20 students is the maximum that one person can reasonably manage, both for safety reasons and so that adequate support can be given to each student. Larger numbers can more easily and safely be accommodated with input from another person with appropriate qualifications / experience or splitting the class into two groups for practical lessons.

Why should I teach my students practical skills?

Although this section is likely to be read once only, it is arguably the most important; for, if it convinces readers that practical work is an essential part of biology as a science and underpins the whole teaching programme, the aim of publishing this booklet will have been achieved.

Points to consider

- It’s fun! The majority of students thoroughly enjoy practical work. The passion that many scientists have for their subject grew out of their experiences in the practical classes. Students who enjoy what they are doing are likely to carry this enthusiasm with them and so be better motivated.

- Learning is enhanced by participation as students tend to remember activities they have performed more easily, thus benefiting their long-term understanding of the subject. Students who simply memorise and recall facts find it difficult to apply their knowledge to an unfamiliar context. Experiencing and using practical skills helps develop the ability to use information in a variety of ways, thus enabling students to apply their knowledge and understanding more readily.

- The integration of practical work into the teaching programme quite simply brings the theory to life. Teachers often hear comments from students such as “I’m glad we did that practical because I can see what the book means now.” and “It’s much better doing it than talking about it.”.
• Chemistry, physics and biology are by their very nature, practical subjects – both historically and in the modern world. The majority of students who enter careers in science need to employ at least basic practical skills at some time in their career. For all students, whether they regard themselves as scientists or non-scientists, the skills that they develop by doing practical work, hand-eye coordination skills, communication, numeracy and problem solving skills, will prove to be useful transferable skills throughout their future life.

• A practical course develops many cross-curricular skills including literacy, numeracy, ICT and communication skills. It develops the ability to work both in groups and independently and with confidence. It enhances critical thinking skills and it requires students to make judgements and decisions based on evidence, some of which may well be incomplete or flawed. It helps to make students more self-reliant and less dependent on information provided by the teacher.

• The skills developed are of continued use in a changing scientific world. While technological advances have changed the nature of practical procedures, the investigative nature of practical science is unchanged. The processes of observation, hypothesis formation, testing, analysis of results and drawing conclusions will always be the processes of investigative science. The ability to keep an open mind in the interpretation of data and develop an appreciation of scientific integrity is of great value both in science and non-science careers.

• Practical work is not always easy and persistence is required for skills and confidence to grow. Students often relish this challenge and develop a certain pride in a job well done.

• The more experience students have of a variety of practical skills, the better equipped they will be to perform well in the practical exams, both in terms of skills and confidence. While it could be argued that the required skills could be developed for papers 31 and 32 simply by practising past-papers, the all-round confidence in practical ability will be greatly enhanced by a wider experience. Similarly for paper 5, while it might be argued that planning, analysis and evaluation could be taught theoretically, without hands-on experience of manipulating their own data, putting their plans into action and evaluating their own procedures and results, students will find this section difficult and will be at a distinct disadvantage in the examination. Those students who can draw on personal experience, and so are able to picture themselves performing the procedure they are describing, or recall analysing their own results from a similar experiment are much more likely to perform well than those with limited practical skills.
What are the practical skills required by this course?

This course addresses seven practical skills that contribute to the overall understanding of scientific methodology. In a scientific investigation these would be applied in the following sequence.

1 Planning the experiment
2 Setting up / manipulating apparatus
3 Making measurements and observations
4 Recording and presenting observations and data
5 Analysing data and drawing conclusions
6 Evaluating procedures
7 Evaluating conclusions

The syllabus shows how these seven skills are assessed and the structure is common to all three sciences. The emphasis of the AS syllabus is on developing an understanding and practice of scientific procedures, the collection of data, analysis and drawing conclusions. It also starts to develop critical evaluation of procedures by suggesting improvements to experimental procedures. In general students find the performance of practical procedures and the collection of data more accessible than analysis, whilst evaluation is least readily accessed. To enable access to these more demanding skills, students need to understand why an experimental procedure is carried out in a particular way so that they can recognise sources of error or limitations which could affect the reliability of their results. Students will not be able to evaluate until they can critically review a practical procedure.

The A2 syllabus builds upon the skills developed in AS and its emphasis is on the higher level skills of planning, analysis and evaluating. In order to plan effectively, students need to be able to evaluate procedures and critically assess results. This is best achieved by the performance of practical exercises starting in AS with relatively straightforward and familiar contexts and developed in A2 by the use of more complex procedures and less familiar contexts. Data analysis again develops from AS into more complex treatments so that students need to be given opportunities to gather suitable data and perform the appropriate manipulations. The evaluation of conclusions and assessing procedures are very high order skills. Students who have not had sufficient opportunity to plan and trial their own investigations will find these skills difficult. Students are not expected to be able to plan perfectly, but to recognise weaknesses and make reasonable suggestions for improvement. The best learning tool to develop these skills is to devise a plan, carry out the investigation and then assess how well the planned procedure worked. The syllabus gives detailed guidance on the expected skills and learning outcomes.

In summary, as the syllabus clearly shows, skills 2-6 listed above will be assessed at AS level in papers 31 and 32. Skills 1 and 7 will only be assessed at A level in paper 5, which will also take skills 5 and 6 to a higher level.

The above list shows the seven skills in the order in which they would be used in an extended investigation. It is not suggested, nor would it be wise, to teach these skills in this order. Students who are new to practical work will initially lack the basic manipulative skills, and the confidence to use them. It would seem sensible, therefore, to start practical training with skill 2, initially with very simple tasks and paying attention to the establishment of safe working practices.

Once a measure of confidence in their manual dexterity has been established, AS students can move on to exercises that require skills 3 and 4 to be included. Extensive
experience in carrying out practical procedures allows students to gain awareness of appropriate quantities and become more organised in time management and the recording of data as it is collected.

It is likely that skill 6, Evaluating Procedures, will be the most difficult to learn at AS level. Critical self-analysis does not come easily to many people. 'My experiment worked well' is a frequent and inappropriate response. If students are to master this skill, they need to develop an appreciation of reliability and accuracy inherent in the equipment and procedure they are using. Only then will they be able to identify anomalous results, or results which fall outside of the ‘range of uncertainty’ intrinsic in the choice of apparatus used and so are considered to be inaccurate. Exercises with less reliable/accurate outcomes can be used to provide more scope for the evaluation of procedural, technique or apparatus errors.

Planning is arguably the most demanding of the seven skills. For it to be effective, students need to be very well grounded in skills 2-6, so that they can anticipate the different stages involved in the task, and can provide the level of detail required. It is for this reason that planning skills are not assessed at AS level but form part of the A2 assessment in Paper 5. Unless students use apparatus they do not develop an understanding of how it works and the sort of measurements that can be made using particular sorts of apparatus. Candidates cannot be taught to plan experiments effectively unless, on a number of occasions, they are required:

- to plan an experiment;
- to perform the experiment according to their plan;
- to evaluate what they have done.

The evaluation of conclusions, skill 7, is done by comparison of the outcome of an exercise with the predicted outcome, and so is also an A2 skill. It should be taught and practised as part of the planning exercises.

Summary of each of the seven skills

Full details of the requirements for each of these skills may be found in the Practical Assessment section of the syllabus. What follows below is a brief summary of the skills involved.

1 Planning

- **Defining the problem**
 Students should be able to use information provided about the aims of the investigation, or experiment, to identify the key variables. They should use their knowledge and understanding of the topic under consideration to make a quantitative, testable, prediction of the likely outcome of the experiment.

- **Methods**
 The proposed experimental procedure should be workable. It should, given that the apparatus is assembled appropriately, allow data to be collected without undue difficulty. There should be a description, including diagrams, of how the experiment should be performed and how the key variables are to be controlled. Equipment, of a level of precision appropriate for the measurements to be made, and quantities to be used should be specified. The use of control experiments should be considered.

- **Risk assessment**
 Candidates should be able to carry out a simple risk assessment of their plan, identifying areas of risk and suggesting suitable safety precautions to be taken.
Planning for analysis, conclusions and evaluation
Students should be able to describe the main steps by which their results would be analysed in order that valid conclusions might be drawn. This may well include the generation of a results table and the proposal of graphical methods to analyse data. Also, they should propose a scheme for the interpretation and evaluation of the results themselves, and of the experimental procedure employed in obtaining those results. There should be an indication of how the outcomes of the experiment would be compared with the original hypothesis.

2 Setting up / manipulating apparatus
It is important that students are allowed sufficient time and opportunity to develop their manipulative skills to the point where they are confident in their approach to experimental science. They must be able to follow instructions, whether given verbally, in writing or diagrammatically, and so be able to set up and use the apparatus for experiments correctly.

3 Making measurements and observations

- Measuring/observing
 Whilst successfully manipulating the experimental apparatus, it is crucial that students are able to make measurements with accuracy and/or to make observations with clarity and discrimination. Accurate readings of meters or burettes and precise descriptions of colour changes and precipitates will make it much easier for students to draw valid conclusions, as well as scoring more highly in the test.

- Deciding on what measurements/observations to make
 Time management is important, and so students should be able to make simple decisions on the number and the range of tests, measurements and observations that can be made in the time available. For example, if the results of the first two titrations are in good agreement, there is no need to carry out a third.

 Students need to be able to make informed decisions regarding the appropriate distribution of measurements within the selected range, which may not always be uniform, and the timing of measurements made within the experimental cycle. They should also be able to identify when repeated measurements or observations are appropriate.

 The strategies required for identifying and dealing with results which appear anomalous should be practised.

4 Recording and presenting observations and data
An essential, but frequently undervalued, aspect of any experimental procedure is the communicating of the results of the procedure to others in a manner that is clear, complete and unambiguous. It is vital that students are well practised in this area.

- The contents of the results table
 The layout and contents of a results table, whether it is for recording numerical data or observations, should be decided before the experiment is performed. ‘Making it up as you go along’ often results in tables that are difficult to follow and don’t make the best use of space. Space should be allocated within the table for any manipulation of the data that will be required.
• **The column headings in a results table**
 The heading of each column must be clear and unambiguous. In columns which are to contain numerical data, the heading must include both the quantity being measured and the units in which the measurement is made. The manner in which this information is given should conform to ‘accepted practice’.

• **The level of precision of recorded data**
 It is important that all data in a given column is recorded to the same level of precision, and that this level of precision is appropriate for the measuring instrument being used.

• **Display of calculations and reasoning**
 Where calculations are done as part of the analysis, all steps of the calculations must be displayed so that thought processes involved in reaching the conclusion are clear to a reader. Similarly, where conclusions are drawn from observational data, the key steps in reaching the conclusions should be reported and should be clear, sequential and easy to follow.

• **Significant figures**
 Students should be aware that the number of significant figures to which the answer is expressed shows the precision of a measured quantity. Therefore, great care should be taken with regard to the number of significant figures quoted in a calculated value. The general rule is to use the same number of significant figures as (or at most one more than) that of the least precisely measured quantity.

• **Data layout**
 Students should be able to make simple decisions concerning how best to present the data they have obtained, whether this is in the form of tabulated data or as a graph. When plotting graphs they should be able to follow best practice guidelines for choosing suitable axis scales, plotting points and drawing curves or lines of best fit. In drawing tables they should be able to construct a table to give adequate space for recording data or observations.

5 **Analysing data and drawing conclusions**

This skill requires students to apply their understanding of underlying theory to an experimental situation. It is a higher-level skill and so makes a greater demand on a student’s basic understanding of the biology involved. Even when that understanding is present, however, many students still struggle. The presentation of a clear, lucid, watertight argument does not come naturally to most people and so much practice in this area is recommended.

• **Interpretation of data or observations**
 Once data has been presented in the best form for analysis of the results of the experiment, the student should be able to describe and summarise any patterns or trends shown and the key points of a set of observations. Further values such as the gradient of a graph may be calculated or an unknown value found, for example from the intercept of a graph.

• **Errors**
 Students should be used to looking at an experiment, assessing the relative importance of errors and where appropriate, expressing these numerically. Students should be aware of two kinds of error.

 i The ‘error’ that is intrinsic in the use of a particular piece of equipment. Although we refer to this as an equipment error, we really
mean that there is a ‘range of uncertainty’ associated with measurements made with that piece of equipment. This uncertainty will be present no matter how skilled the operator might be.

ii Experimental error, which is a direct consequence of the level of competence of the operator or of the effectiveness of the experimental procedure.

- Conclusions
 Students should learn to use evidence to support a given hypothesis, to draw conclusions from the interpretation of observations, data or calculated values and to make scientific explanations of their data, observations and conclusions. Whatever conclusions are drawn, they must be based firmly on the evidence obtained from the experiment. At the highest level, students should be able to make further predictions and ask appropriate questions based on their conclusions.

6 Evaluating procedures

Arguably, this is one of the most important, and probably one of the most difficult skills for a student to develop. In order for the evaluation to be effective, students must have a clear understanding of the aims and objectives of the exercise, otherwise they will not be able to judge the effectiveness of the procedures used. They must be able to evaluate whether the errors in the data obtained exceed those expected due to the equipment used. If this is the case, they then need to identify those parts of the procedure which have generated these excess errors, and suggest realistic changes to the procedure which will result in a more accurate outcome. Students should also be able to suggest modifications to a procedure to answer a new question.

The evaluation procedure may include:

i the identification of anomalous values, deducing possible causes of these anomalies and suggesting appropriate means of avoiding them,

ii an assessment of the adequacy of the range of data obtained,

iii an assessment of the effectiveness of the measures taken to control variables,

iv taking an informed judgement on the confidence with which conclusions may be drawn.

7 Evaluating conclusions

This is also a higher-level skill, which will demand of the student a thorough understanding of the basic theory that underpins the science involved.

The conclusions drawn from a set of data may be judged on the basis of the strength or weakness of any support for or against the original hypothesis. Students should be able to use the detailed scientific knowledge and understanding they have gained in theory classes in order to make judgements about the reliability of the investigation and the validity of the conclusions they have drawn.

Without practice in this area, students are likely to struggle. In order to increase the confidence in drawing conclusions, it is recommended that practical exercises, set within familiar contexts, be used to allow students the opportunity to draw conclusions, make evaluations of procedure and assess the validity of their conclusions.

In the examination, students may be required to demonstrate their scientific knowledge and understanding by using it to justify their conclusions.
Ways of doing practical work

Science teachers should expect to use practical experiences as a way to enhancing learning. Practical activities should form the basis on which to build knowledge and understanding. They should be integrated with the related theory, offering opportunities for concrete, hands-on learning rather than as stand-alone experiences. In planning a scheme of work it is important to consider a mosaic of approaches that include those that allow students to participate in their own learning.

- Some practical activities should follow the well established structure that includes a detailed protocol to follow. Such well-structured learning opportunities have a vital role to play in introducing new techniques, particularly in rapidly developing fields such as biotechnology. In these new areas of science, teachers will often find themselves leading practical work that they have not had the chance experience themselves as students.

- Other practical activities should offer the students the opportunity to devise their own methods or to apply to solving a problem the methods that they have been taught. The excitement generated by exposure to “new” and unfamiliar techniques provides a stimulus to engage a student’s interest and challenge their thinking.

Practical activities may be used as a tool to introduce new concepts – for example, introducing catalysis by experimentation, followed up by theoretical consideration of the reasons for the unexpected results obtained. On other occasions, practical work can be used to support and enhance the required knowledge and understanding – for example in building upon a theoretical consideration of the limiting factors of photosynthesis with a series of practicals investigating the effect of light intensity and hydrogen carbonate concentration on photosynthesis in water weed. In all cases, learning will be enhanced most effectively by practical work that encourages students to be involved, to think, to apply and use their knowledge, understanding and skills.

Practical work does not always have to be laboratory based. In classrooms, the use of models, role play and paper cut-outs to simulate processes can be equally valuable. Field studies also contribute greatly to a students’ appreciation of Biology and their motivation and enjoyment of the subject. No amount of reading or viewing videos can substitute for being exposed to an environment and the organisms living there. Even a carefully managed environment like a school lawn represents a challenge to recognise the species and to understand how they can survive.

There are a variety of strategies by which practical work can be integrated into a scheme of work. Teachers should use a variety of methods, enhancing a variety of subject specific skills and simultaneously developing a variety of transferable skills that will be useful throughout their future professional lives. Some of the ways of delivering practical work also enable the teacher to interact on a one-to-one basis with individual students. This allows a teacher to offer support at a more personal level and develop a greater awareness of an individual students needs.

Your choice of the specific strategy to use will depend on such issues as class size, laboratory availability, the availability of apparatus, the level of competence of your students, availability and expertise of technical support, the time available, your intended learning outcomes for the activity and safety considerations. The following are some possible strategies for delivery of practical work.
• **Teacher demonstrations**

These require less time than a full class practical, but give little opportunity for students to develop manipulative skills or gain familiarity with equipment. Careful planning can give opportunity for limited student participation. Teacher demonstrations are a valuable way of showing an unfamiliar procedure at the start of a practical session, during which students go on to use the method.

Considerations in choosing to do a demonstration **might include**:

i. **Safety** – some exercises carry too high a risk factor to be performed in groups.

ii. **Apparatus** – complicated procedures or those using limited resources

iii. **Time** – demonstrations usually take less time

iv. **Outcome** – some results are difficult to achieve and may be beyond the skill level of most of the students. A failed experiment may be seen as a waste of time.

v. **Students’ attention** – a danger is that the attention of some students will drift.

vi. **Manipulative experience** – the teacher gets experience, the students’ don’t.

There are many good reasons for the teacher performing a demonstration but do be aware that most students have a strong preference for hands-on experimentation. So, where possible, do let them do it!

• **Group work**

Whole class practical sessions. These have an advantage in terms of management as all the students are doing the same thing. Students may be working individually, in pairs or in small groups. Integrating this type of practical is straightforward as lessons beforehand can be used to introduce the context and following lessons can be used to draw any conclusions are develop evaluation. Where specialised equipment or expensive materials are in short supply this approach may not be feasible.

Small group work. This can provide a means of utilising limited resources or managing investigations that test a range of variables and collect a lot of measurements. Although the same procedure may be performed, each student group collects only one or a few sets of data which are then pooled. For example, if five concentrations of the independent variable are being tested, each of which need to be measured at two minute intervals for thirty minutes, then a group of five students can each test one concentration. In biology, field studies also lend themselves to group activities as a lot of data has to be collected in a short period of time. The individual student has the opportunity to develop their subject-specific skills. Part of the role of the teacher is to monitor and maintain safety and also to enable and persuade reluctant learners to take part. Group work aids personal development as students must interact and work co-operatively.

Considerations might include:

i. **Learning** – successful hands-on work will reinforce understanding; also, students will learn from each other.

ii. **Confidence** – this will grow with experience
iii Awareness/insight – should grow with experience

iv Team building – a most desirable outcome.

v Setting out – all students doing the same thing is easier for the technicians

vi Confusion – incomplete, ambiguous or confusing instruction by the teacher will waste time while the instructions are clarified but may also compromise safety and restrict learning.

vii Opting out – some students will leave it for others to do and so learn very little.

viii Safety – this could be a serious issue and constant vigilance is essential.

ix DIY – the urge to adapt their experiments, to ‘see what would happen if’, must be strictly dealt with.

x Discipline – practical time must not be allowed to become ‘play time’.

Working in groups, whether as part of a whole-class situation or where groups are working on parts of a whole, is probably the preferred option for many students. At A level, it is highly desirable to include opportunities for students to work on their own, developing their own skills and independence. In Papers 31 and 32, a student’s practical skills will be assessed on an individual basis, so an individual’s experience, competence and confidence are of considerable importance.

• Circus of experiments

A circus comprises of a number of different exercises that run alongside each other. Individual or groups of students work on the different exercises and, as each exercise is completed, move on to the next one. These are a means by which limited resources can be used effectively.

There are two basic approaches. Most commonly, during a lesson a number of short activities are targeted at a specific skill. Alternatively, over a series of lessons, a number of longer practical activities are used, addressing a variety of skills. The circus arrangement may be more difficult to manage as the students are not all doing the same activity. This puts more pressure on the teacher as they have to cope with advising and answering questions from a variety of investigations. With circuses spread over a number of sessions, careful planning is needed to enable the teacher to engage each group of students, to maintain a safe environment. In these situations it is useful to have at least two of the circus activities that involve no hands-on practical work - using data response based simulations or other activities. In this way the teacher can interact with groups that need a verbal introduction or short demonstration and can monitor their activities more effectively.

i Apparatus – if the amount of apparatus used in an exercise is limited, students are able to use it in rota.

ii Awareness – students by observing their peers will become more aware of the pitfalls of the exercise and so will learn from the experience of others.

iii Safety – different exercises may well carry different safety risks, all of which would need to be covered.

iv Setting out – students doing different exercises will make it more difficult for the technicians
Opting out – some students ay be tempted to ‘borrow’ the results of earlier groups.

Within theory lessons

This option should be considered whenever it is viable. It is likely that the practical work would be by demonstration, as this would take less time. Given the power of visual images, the inclusion of a short practical to illustrate a theoretical point will reinforce that point and so aid the learning process. It is critical, however, that the practical works correctly, otherwise the flow of the lesson is disrupted and confidence in the theory may be undermined. The exercise should therefore be practiced beforehand.

Project work

Projects are a means by which a student's interest in a particular topic, which is not always directly on the syllabus, can be used to develop investigative skills. It can also be used to access parts of the syllabus that have little laboratory based investigation. For example, in gene technology students might use internet based research to find examples of genetic modification and present a poster display showing the implications. This sort of investigative work can be individual, or a group activity. Once the project is underway, much of the work can be student-based, outside the class room. Care is needed in selecting the topics and setting a time scale, so that the relevance is maintained to the syllabus context. The work can be directed at the production of posters, presentations to give to the group or reports from the group or individual.

Extra-curricular clubs

The role that these can play is in stimulating scientific enquiry methods. There are a number of ways of using clubs. One way is to hold the club session during the teaching day so that all students can attend. In effect this becomes additional lesson time in which students can practice investigative skills, including laboratory work. Such lab work involves materials that have a cost, which must be planned for beforehand. If however the club is held outside the teaching day it may be voluntary. Syllabus specific activities should be limited and the most made of the opportunities for exciting work unrelated to syllabuses. After school clubs could be vehicle for project work that is related to science and of social or economic importance, for example, endangered species or local mineral resources. Students who do attend the club could be used as a teacher resource by bringing back their finding to a class room session.

Keeping records

Students often find it a problem to integrate the practical work to the theory. This is particularly true when a series of experiments or a long term investigation or project is undertaken. Some potential issues include:

- Some students use odd scraps of paper in the laboratory, which are lost or become illegible as chemicals are spilled on them. One important criterion is that students are trained to record results immediately and accurately.

- Practical procedures may be provided, or students write their own notes from a teacher demonstration. These may be lost, so students end up with results but no procedure or context.

- When results take a period of time to collect, analysis becomes isolated from the context of the investigation and may not be completed.
The key to minimising these issues is to train students into good work practices. This is particularly important in colleges where students join at the start of their A levels from a variety of feeder schools. It is also vital for students with specific learning difficulties that affect their ability to organise their work such as dyslexia and Asperger’s syndrome.

Students may be encouraged to integrate the practical in the same file as the theory. Alternatively, students may be encouraged to keep an entirely separate practical book or file. Loose leaf files make it easy to add to the file, but may make it easier to lose items. Exercise books can be used but students should be encouraged to glue provided protocols and their laboratory records into the book so that they are not lost. Depending on how they learn, individuals may vary in their preferred method. Whichever option is chosen, students need to be encouraged to relate their investigations to the appropriate theory and to regard it as something that needs to be thoroughly assimilated.

- Integrating the materials generated by practical work with the notes from learning of theory can be achieved by interspersing the records of investigations with the relevant section of theory. This may still require cross-referencing where several learning outcomes and assessment objectives are targeted by work.
- Keeping a separate practical book enables records of all the practical investigations to be kept in one place. Students need training to manage practical files effectively, particularly in keeping the contexts and cross-referencing to the theory. If care is not taken to develop and maintain these skills, students may perceive practical as something different from theory.
- An intermediate between these two extremes is having a separate section for practical investigations with each syllabus section in each student’s file and cross-referenced to the relevant theory.

How is a practical activity organised?

Preparing for practical work needs thought and organisation. The practical work may be an activity that forms part of a lesson, it may comprise an entire lesson, or it may be an investigation designed to last for several lessons, but in every case, thorough preparation is a key prerequisite to success.

Practical and investigative work should be integrated into the programme of study. The scheme of work should identify appropriate practical investigative experiences for use at the most suitable time. In designing the scheme of work,

- the resource implications should be considered in terms of equipment and materials in stock,
- thought should be given to the seasonal availability of materials such as organisms, and the sometimes short shelf-life of thermo-sensitive substances such as enzymes or hygroscopic substances such as some salts,
- the time taken from order to delivery, potential for damage during despatch and cost of materials to be obtained from local, national or international suppliers should be considered,
- careful scheduling may be needed in Centres with a large number of students. It may be possible to permit several groups to do the work simultaneously or in quick succession, or it may be essential to re-order the scheme of work for different groups so that scarce resources can be used effectively,
note must be taken of national or local health and safety regulations relating to chemicals, electricity, growing microorganisms etc. There may also be regulations controlling use of controversial materials such as genetically modified organisms.

Once the scheme of work has been established, the next stage is to consider each practical activity or investigation. In an ideal course, each of the following stages would be gone through in developing each practical exercise in a course. This is not always realistically possible the first time through a course, which is one reason for the existence of this booklet. It is better to get going and to get some practical work done with students than to hold out for perfection before attempting anything. Obviously, all practical work should be subject to careful and rigorous risk assessment no matter how provisional the rest of the supporting thinking and documentation.

- Decide on the aims of the work – the broad educational goals, in terms of the broad skill areas involved (e.g. planning) and the key topic areas (e.g. animal transport systems or unfamiliar material).

- Consider the investigative skills being developed. Reference should be made to the syllabus, which in the practical skills section, includes learning outcomes relating to practical skill. For instance, if the practical work intended is to be a planning exercise, which of the specific skills identified in the learning outcomes will be developed?

- With reference to the topics included, decide on the intended learning outcomes of the practical activity or investigation, again referring to the syllabus. For instance, which of the transport learning outcomes will be achieved? In a few cases during the course, the material on which the practical is to be based may be unfamiliar, in which case there may be no topic-related intended learning outcomes. Thus, A2 contexts may be used for AS practicals, and topic areas not on the 9700 syllabus at all may be used for AS or A2 practicals.

- In addition, it may be useful to assess any other context of the practical work investigation. For instance, is it intended as part of the introduction of a concept, or to support a theory, or to demonstrate a process?

- Produce a provisional lesson plan, allocating approximate times to introduction, student activities and summarising.

- Produce and trial a student work sheet. Published procedures or those produced by other teachers can be used. Alternatively produce your own. As a rule schedules produced by others need modifying to suit individual groups of students or the equipment available. It helpful to ask students or another teacher to read work sheets before they are finalised as they can identify instructions that are ambiguous or use inaccessible terminology.

- Refine the lesson plan in relation to the number of students for which the investigation is intended (whole class or a small group), the available equipment (does some have to be shared?) and materials. There are examples of lesson plans and student work sheets in appendix 2.

- Carry out a detailed and careful risk assessment (see below) before any preparatory practical work is done, and certainly well before students do any of the practical work. You should consider

 - the likelihood that any foreseeable accident might occur – for example, pupils putting glass tube through bungs are quite likely to break the tube and push it though their hand.
• Make an equipment and materials list. This may need to be in sections;
 o materials and apparatus per student or per group (chemicals and glassware)
 o shared equipment per laboratory (water baths, microscopes, pH meters)
 o any chemicals should include concentrations and quantities needed
 o any equipment should include number required
 o any hazard associated with specific chemicals or equipment should also be noted and cross referenced to the risk assessment. Sources of information about safety may be listed in the syllabus (and are reproduced below).
 o The location of storage areas for equipment and chemicals may be cross referenced to this equipment and materials list.
• Set up and maintain a filing system where master copies of the work sheets, lesson plans and equipment lists can be stored. It is helpful to have these organised, or at least indexed, by both their syllabus context and skills developed.
• Once an investigation has been used by a group of students it should be evaluated in relation to intended outcomes and the lesson plan. It is important to obtain feedback from the students about their perception of the work. For example,
 o was the time allocation appropriate,
 o were the outcomes as expected,
 o did the students enjoy the work,
 o did the students understand the instructions,
 o was the point of the work clear to the students?
 If necessary the work sheet and lesson plan should be revised.

Risk assessment

All practical work should be carried out in accordance with the health and safety legislation of the country in which it is done. No activities should be attempted if they conflict with such legislation.

Hands-on practical work can be carried out safely in schools. If it is to be safe, then the hazards need to be identified and any risks from them reduced to insignificant levels by the adoption of suitable control measures. These risk assessments should be done for all the activities involved in running practical science classes including storage of materials, preparatory work by the teacher and by any technical support staff and the practical activities that are carried on in the classroom, whether demonstrations by the teacher or practical activities for the students. Such risk assessments should be carried out in accordance with the health and safety legislation of the country in which they are done.

Risk assessment involves answering two basic questions:

1 how likely is it that something will go wrong? For example, pupils using a double sided razor blade to cut up carrots are quite likely to cut themselves.
2 how serious would it be if it did go wrong? For example the consequences of a spark from an experiment landing in an open bottle of magnesium powder are likely to be serious, including spraying burning magnesium all over the laboratory, burning many pupils and setting the laboratory ceiling on fire (based on a real accident).

With the answers to these questions it is now possible to plan the practical activity to minimise the risk of an accident and to minimise how severe any accident might be. In our examples, this might include cutting up the carrot before giving to young pupils, or providing older pupils with an appropriate sharp knife, it might include bringing in to the laboratory only the amount of magnesium powder required for the activity.

How likely it is that something will go wrong depends on who is doing it and what sort of training and experience they have had. You would obviously not ask 11 year old students to heat concentrated sulphuric acid with sodium bromide, or to transfer \textit{Bacillus subtilis} cultures from one Petri dish to another, because their inexperience and lack of practical skills makes a serious accident all too likely. By the time they reach post-16 they should have acquired the skills and maturity to carry such activities out safely.

Decisions need to be made as to whether an activity should be a teacher demonstration only, or could be done by students of various ages. This means that some experiments should normally only be done as a teacher demonstration or by older students. Perhaps with well-motivated and able students it might be done earlier, but any deviation from the model risk assessment needs discussion and a written justification beforehand.

There are some activities that are intrinsically dangerous, and, if included in the suggested activities, should always be changed to more safe modes of practice, for example, there are \textbf{no} circumstances under which mouth pipetting is acceptable – pipette fillers of some sort should \textbf{always} be used.

Teachers tend to think of eye protection as the main control measure to prevent injury. In fact, personal protective equipment, such as goggles or safety spectacles, is meant to protect from the unexpected. If you expect a problem, more stringent controls are needed. A range of control measures may be adopted, the following being the most common. Use:

- a less hazardous (substitute) chemical;
- as small a quantity as possible;
- as low a concentration as possible;
- a fume cupboard; and
- safety screens (more than one is usually needed, to protect both teacher and students).

The importance of lower concentrations is not always appreciated, but the following examples, showing the hazard classification of a range of common solutions, should make the point.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Hazard Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia (aqueous)</td>
<td>irritant if ≥ 3 mol dm$^{-3}$</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>irritant if ≥ 0.05 mol dm$^{-3}$</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>irritant if ≥ 2 mol dm$^{-3}$</td>
</tr>
<tr>
<td>Nitric acid</td>
<td>irritant if ≥ 0.1 mol dm$^{-3}$</td>
</tr>
<tr>
<td>Sulphuric acid</td>
<td>irritant if ≥ 0.5 mol dm$^{-3}$</td>
</tr>
<tr>
<td>Barium chloride</td>
<td>harmful if ≥ 0.02 mol dm$^{-3}$</td>
</tr>
</tbody>
</table>
Reference to the above table will show, therefore, that if sodium hydroxide is in common use, it should be more dilute than 0.5 mol dm$^{-3}$. The use of more concentrated solutions requires measures to be taken to reduce the potential risk.

Material Safety Data Sheets (MSDS)

Your risk analysis should consider the hazards associated with the materials you propose to use. These risks are best assessed by reference to MSDS’s appropriate to the chemical(s) in use. These are generally supplied by the chemical manufacturer and supplied with the chemical. If this is not the case then there are many internet sites that have this information freely available. These sheets also provide useful information on the actions to take following an accident, including first aid measures, and should therefore be considered essential for all practical experiments involving chemicals, as part of the risk assessment process.

Hazard key

The following key applies.

- **C** = Corrosive substance
- **F** = Flammable substance
- **H** = Harmful or irritating substance
- **O** = Oxidising substance
- **T** = Toxic substance
- **N** = Harmful to environment

Eye protection

Clearly students will need to wear eye protection. Undoubtedly, chemical splash goggles give the best protection but students are often reluctant to wear goggles. Safety spectacles give less protection, but may be adequate if nothing which is classed as corrosive or toxic is in use.

Your risk assessment should not restrict itself simply to the materials, procedures and equipment being used, but should have a wider remit, covering the time from when the class enter the room until they leave it.

Practical science can be - and should be - fun. It must also be safe. The two are not incompatible.

Safeguards in the School Laboratory, 10th edition, ASE, 1996
Hazcards, CLEAPSS, 1998 (or 1995)
Laboratory Handbook, CLEAPSS, 1997
Safety in Science Education, DfEE, HMSO, 1996
AS Skills

AS skills will form the foundation on which A2 skills will be developed. Students will become competent in these skills through practical experience. They should be expected, during the AS course, to carry out as much practical work as possible, since this will develop both key practical skills and enhance their motivation as well as their understanding of the theory part of the course. The specific investigations to which references are made can be found in appendices 1 and 2. The syllabus clearly describes the skills that are to be assessed, and should be used to ensure that activities are appropriately targeted.

Teaching students to manipulate, measure and observe

As part of their AS studies students will be expected to develop skills in manipulating and measuring using standard laboratory apparatus. These will form a basis on which more advanced manipulative skills will be developed in A2. During their AS course it is assumed that students will learn how to measure accurately and to manage their time effectively, so that they are confident in their use of apparatus.

• A good starting point to practice these skills is with microscope work (e.g. practicals 1 and 2). Students will be expected to be confident in the use of microscopes and be able to make temporary mounts of a variety of specimens. It is most important that they are capable of recording their observation by being able to make clear, well proportion, labelled drawings of what they observe. This is not an easy skill to acquire and time should be spent to ensure that students develop their capability in this skill.

• Various investigations (such as practicals 5 and 6) will also allow students to collect data and make observations. This will require that students are able to follow a set of instructions and set up apparatus appropriately. They should then be able to collect data using a wide variety of means.

• Students should be able to make informed decisions about the number of times a reading should be taken and the range of readings that is required to collect reliable and valid data. Students should also be able to replicate readings or observations as necessary. Many of the practical investigations here offer such opportunities, but particularly open-ended investigations such as practical 16.

Teaching students to present data and record observations

Many students do not find this an easy skill to master. It is important that students can record data so that it is capable of being understood by others. This requires skill in deciding how to present the data and what should be recorded.

• Students need to be able to present numerical data in tabular form and to decide on the structure of the table and what titles and units should be written in the column headers. They should produce the table so that readings from the investigation may be entered directly into the table as the readings are taken. Space should be allocated in tables as necessary for calculated values and deductions. Opportunities include practical 7 and 19.

• Students should ensure that all readings are taken with the same degree of accuracy and precision.

• Students often assume that everyone understands how they achieved their answers to questions or calculations without realising that this is not the case.
This is particularly true when answering examination questions. Examiners can only give credit for what they see and students may well receive credit for a correct method even if they reach the wrong answer or conclusion. However this requires that the students display their calculations and reasoning.

- Students should show the working in their calculations and the key steps in their reasoning.
- Students should also use the correct number of significant figures for calculated quantities.

Several of the practicals include such numerical work, for example practicals 2, 13, 14 and 20.

- Students should be able to choose a suitable method of presenting data obtained from an investigation for example quantitative data as graphs (e.g. practicals 6 and 7), qualitative data as tables (e.g. practicals 3 and 4) and cellular and histological data as drawings (e.g. practicals 1, 2, 13 and 14).
- When producing graphs, students should be able to select which variables to plot on the x and y axes. They should be able to plot with accuracy and follow the Institute of Biology recommendations for drawing lines on graphs.
- More information concerning the presentation of data and observations is provided in the syllabus.

Teaching students to analyse, draw conclusions and evaluate

These are the hardest skills that have to be mastered by students. Evaluation in particular is found very difficult by most students as they are having to think in the abstract rather than handle real apparatus and materials. It is most important that the basics in these skills are mastered so that they can be further developed in the A2 part of the course.

- Students need to be able to interpret data or observations by describing patterns and trends shown by tables and graphs. In data such as highly curved graphs, the key patterns should be described (e.g. practical 5) and in data producing simple curves or straight lines, the trend of the data observed and described (e.g. practical 6).
- Students should be able to determine unknown values by extrapolation and interpolation of lines on graphs and be able to calculate the mean from replicated observations.
- It is most important that students are able to explain the degree of confidence they have in their conclusion and identify and explain possible sources of error in the investigation.
- Students should be able to say whether the data obtained supports the original hypothesis and use this to make further predictions.
- The ability to make simple evaluations should be practiced so that this skill can be further developed in A2. This enables students to suggest improvements to procedures so as to improve the reliability of the data obtained and to extend investigations into new situations or solve related problems. The more practice students have of this skill, the better. Ideally every investigation could be evaluated using a simple check list until it becomes an automatic response by a student.
Appendix 1 - Designing a practical course for AS

Outline List of Practical Experiments
Full details are provided for practicals 1 - 11

<table>
<thead>
<tr>
<th>Number and title</th>
<th>type of practical</th>
<th>syllabus reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Size and scale</td>
<td>obs</td>
<td>A</td>
</tr>
<tr>
<td>2 Plant tissue observation</td>
<td>obs</td>
<td>A</td>
</tr>
<tr>
<td>3 The identification of biological chemicals present in solutions</td>
<td>wet</td>
<td>B</td>
</tr>
<tr>
<td>4 The metabolism of different carbohydrates by yeast</td>
<td>wet</td>
<td>B</td>
</tr>
<tr>
<td>5 Effect of pH on enzymes</td>
<td>wet</td>
<td>C</td>
</tr>
<tr>
<td>6 Effect of inhibitors on enzymes</td>
<td>wet</td>
<td>C</td>
</tr>
<tr>
<td>7 Using beetroot to investigate cell membrane permeability</td>
<td>wet</td>
<td>D</td>
</tr>
<tr>
<td>8 Root tip squash</td>
<td>wet</td>
<td>E</td>
</tr>
<tr>
<td>9 The extraction of DNA from onions</td>
<td>wet</td>
<td>F</td>
</tr>
<tr>
<td>10 Effect of wind-speed on transpiration rate using a potometer</td>
<td>wet</td>
<td>G</td>
</tr>
<tr>
<td>11 Investigating the role of carbon dioxide in living organisms</td>
<td>wet</td>
<td>H</td>
</tr>
<tr>
<td>12 Size and scale</td>
<td>obs</td>
<td>A</td>
</tr>
<tr>
<td>13 Plant tissue observation</td>
<td>obs</td>
<td>A</td>
</tr>
<tr>
<td>14 Animal tissue observation</td>
<td>obs</td>
<td>A</td>
</tr>
<tr>
<td>15 Food tests</td>
<td>wet</td>
<td>B</td>
</tr>
<tr>
<td>16 Effect of temperature on enzymes</td>
<td>wet</td>
<td>C</td>
</tr>
<tr>
<td>17 Effect of substrate concentration on enzymes</td>
<td>wet</td>
<td>C</td>
</tr>
<tr>
<td>18 Effect of enzyme concentration</td>
<td>wet</td>
<td>C</td>
</tr>
<tr>
<td>19 Osmosis</td>
<td>wet</td>
<td>D</td>
</tr>
<tr>
<td>20 Plasmolysis and water potential</td>
<td>w&o</td>
<td>D</td>
</tr>
<tr>
<td>21 Chromosome observation - prepared root tip squash</td>
<td>obs</td>
<td>E</td>
</tr>
<tr>
<td>22 Stomata</td>
<td>obs</td>
<td>G</td>
</tr>
<tr>
<td>23 Effect of temperature and light on transpiration rate</td>
<td>wet</td>
<td>G</td>
</tr>
<tr>
<td>24 Investigate transport of water using celery</td>
<td>wet</td>
<td>G</td>
</tr>
<tr>
<td>25 Investigate tidal and vital capacity</td>
<td>wet</td>
<td>H</td>
</tr>
<tr>
<td>26 Effect of nicotine on heart rate of daphnia</td>
<td>wet</td>
<td>H</td>
</tr>
<tr>
<td>27 Bacteria and viruses</td>
<td>obs</td>
<td>I</td>
</tr>
<tr>
<td>28 Blood cell smear</td>
<td>w&o</td>
<td>J</td>
</tr>
<tr>
<td>29 Food chains and food webs</td>
<td>field</td>
<td>K</td>
</tr>
<tr>
<td>30 Nutrient cycling</td>
<td>wet</td>
<td>K</td>
</tr>
</tbody>
</table>

The route which teachers take through the AS syllabus may vary. The practical course follows the sequence of the syllabus, although some learning outcomes may well be grouped differently. Teachers can adapt the investigations as they wish as they wish. All of the investigations that are supplied in detail are intended to be completed within a one hour time span.

CIE 9700/03 practical papers are not intended to be used for formative development of practical skills. The questions set for the previous syllabus are written to different assessment objectives, although some of the practical components could be used as practice exercises. Teachers who choose to use past papers as a student’s only learning experience are placing these students at a disadvantage.
Syllabus section A – Cell Structure

Practical 1 – Size and scale 1

Learning outcomes (a) use a stage micrometer and graticule and (f) calculate linear magnification of drawings

Practical skills: Manipulation, measurement and calculation.

The practical uses a stage micrometer to calibrate an eyepiece graticule so that specimen size can be determined. The candidates can also determine the scale of drawings that are made of the specimens under observation. It is suggested that the eyepiece lenses be fitted with the graticules prior to the investigation.

Full details of this practical are provided.

Practical 12 – Size and scale 2 The investigation described in practical 1 uses a TS of *Lamium* stem, but the practical can and should be modified and form a template for a series of practicals to include other examples from a wide range of plant and animal tissues.

Practical 2 – Plant tissue observation

Learning outcomes (f) draw plan diagrams of tissues. The practical can be extended to also cover (b) (e) and (g) distinguish between resolution and magnification and compare and contrast structure of plant and animal and prokaryotic and eukaryotic cells.

Practical skills: Observation and recording and interpreting observations.

The practical emphasises and practices microscopic and drawing skills so that candidates are able to use a microscope and produce clear, well proportioned, labelled drawings in both low and high power. They also learn the difference between cellular and plan drawings and how best to represent the various tissues of a specimen under observation.

Full details of this practical are provided.

Practical 13 – Plant tissue observations **Practical 14 – Animal tissue observations** The investigation described in practical 2 should be modified and form a template for a series of practicals at appropriate points through the course, to include other examples from a wide range of plant and animal tissues.

Syllabus section B – Biological Molecules

Practical 15 – food tests – students may well have used food tests in their previous biology courses, but they should be given an opportunity to use Benedict’s test for reducing and non-reducing sugars, biuret test for protein, iodine in potassium iodide solution for starch and the ethanol emulsion test for lipid. They should be given prepared solutions / oils to try, as well as liquid food materials such as milk and food materials that need grinding up and suspending such as bread.
Practical 3 – Identification of biological chemicals present in solutions
Learning outcomes (a) carry out tests for reducing and non-reducing sugars, starch, lipids and proteins.

Practical skills: Manipulation, measurement, observation, recording of data, interpreting and drawing conclusions.

The practical develops an understanding of the application of different biochemical tests to the problem of identification of unknown substances. The practical concentrates on developing skills of decision making, recording, drawing conclusions and identifying alternative strategies.

Full details of this practical are provided.

Practical 4 – the metabolism of different carbohydrates by yeast
Learning outcomes (a), (b) and (d) form the context for this practical, making use of unfamiliar methods and materials and thus (e) use the knowledge gained to solve related problems in a new situation.

Practical skills: Manipulation, measurement and observation, presentation of data and analysing and forming conclusions.

The practical investigates how efficient yeast is in metabolising different carbohydrates by observing the time taken for methylene blue to be discoloured. The ideas developed can include previous work done on cell membranes and the different ways that substances are transported into and out of cells.

Syllabus section C – Enzymes

Practical 5 – Effects of pH on enzymes
Learning outcomes (c) follow the course of an enzyme catalysed reaction and (d) investigate and explain the effect of pH on the rate of enzyme catalysed reactions.

Practical skills: Manipulation, measurement and observation, presentation of data and analysing and forming conclusions.

The practical investigates the effect of pH on enzymes and the effect on the hydrogen and ionic bonds that determine the shape of the active site. Candidates may determine the optimum pH and the point at which the enzyme has been denatured.

Full details of this practical are provided.

Practical 6 – Effect of inhibitors on enzymes
Learning outcomes (c) follow the course of an enzyme catalysed reaction and (e) explain the effects of a non-competitive inhibitor on the rate of enzyme activity.

Practical skills: Manipulation, measurement and observation, presentation of data and analysing and forming conclusions.

The practical investigates the effect of a non-competitive inhibitor, lead nitrate, on the hydrolysis of starch.

Full details of this practical are provided.
Practical 16 – Effect of temperature on enzymes The effect of temperature on enzyme catalysed reactions should be investigated. Candidates can carry out a simple enzyme catalysed reaction at different temperatures using provided troughs / plastic bowls at different temperatures as water baths. This works well using protease such as trypsin or bacterial protease and exposed, developed black-and-white photographic film, or using amylase and starch. The data collected can then be displayed graphically to assist in drawing conclusions. Experiments of this type lend themselves to be critically analysed, evaluated and improved.

Practical 17 – Effect of substrate concentration on enzymes Practical 18 effect of enzyme concentration These experiments can be further modified to investigate the enzyme concentration and the concentration of substrate on the rate of reaction. This would offer the opportunity to use other enzyme/substrate systems such as urea/urease (detect time taken for ammonia to be produced), yeast catalase/hydrogen peroxide (height of foam or count bubbles from delivery tube or collect gas over water and measure volume) or lipid emulsion/lipase (detect changes in pH). In addition this will also practice the skills of identifying and controlling variables. At this level, candidates should also be able to identify dependent and independent variables.

Syllabus section D – Cell Membranes and Transport

Practical 7 – Using beetroot to investigate cell membrane permeability

Learning outcomes (b) outline the role of membranes within cells, (c) describe the process of diffusion and (e) use the knowledge gained to solve related problems in a new situation.

Practical skills: Manipulation, measurement and observation, presentation of data and analysing and forming conclusions.

The practical investigates the effect of temperature on the permeability of cell membranes. Candidates will need access to a colorimeter for this experiment although it could be modified so that diluted solutions were compared against a standard colour chart. Paint manufactures produce a very wide range of standard colours for paints mixed ‘in store’ and a selected sample of these could be used for ‘standards’.

Full details of this practical are provided.

Practical 19 – Osmosis This can be investigated in a variety of ways such as determining the water potential of potato tissue by placing samples of potato in different concentrations of sucrose solution and noting the gain or loss in mass of the tissue. The data can be displayed graphically and the concentration determined by interpolation on the graph.

Practical 20 – Plasmolysis and water potential Plasmolysis can be investigated in epidermal onion tissue. The water potential can be determined by finding incipient plasmolysis in cells placed in different concentrations of solution. This extends the work done in the previous practical on osmosis by including the skills of microscope technique in the practical. Students may well need training in order to identify cells with incipient plasmolysis.
Syllabus section E – Cell and nuclear division

Practical 8 – root tip squash

Learning outcomes (d) describe with the aid of diagrams, the behaviour of chromosomes during the mitotic cell cycle.

Practical skills: Manipulation, observation, interpretation and recording observations.

The practical involves preparing and staining cells from an active meristem in the roots of plants. The cell tissue is then ‘squashed’ and observed using standard microscopic techniques and different stages of mitotic cell division identified and drawn. It is advised that due to shortness of time within a one hour lesson, that candidates have previously done other microscope practicals so that they are familiar with and can use a microscope with skill and precision.

Full details of this practical are provided.

Practical 21 – chromosome observation – prepared root tip squash

Practical 8 can be further extended and modified so that candidates are provided with ready made prepared cell tissue showing a full range of the different stages of cell division in order that they can become skilful in identifying and drawing them. This is good material for developing skills of measurement, observation and drawing as the structures are intra-cellular and therefore small.

Syllabus section F – Genetic Control

Practical 9 – Extraction of DNA from onions

Learning outcomes (a) describe the structure and importance of DNA

Practical skills: Manipulation and making observations.

The practical involves the extraction of DNA from living material such as onion and clearly and powerfully demonstrates to students the actual existence of DNA when it has probably been experienced by the student as a theoretical substance found only in textbooks.

Full details of this practical are provided.

Syllabus section G – Transport

Practical 10 – effect of wind-speed on transpiration rate.

Learning outcomes (c) describe how to investigate experimentally the factors that effect transpiration rate.

Practical skills: Manipulation, data collection and analysis and drawing conclusions.

The practical investigates transpiration in a leafy shoot using a potometer and the effect that wind speed has on the rate of transpiration. Wind-speed is determined by a fan that is set at different distances from the plant. Students come to realise that this does not involve the inverse square law but this idea can be developed to show how the inverse square law affects light and photosynthesis.

Full details of this practical are provided.
Practical 23 – Effect of light and temperature on transpiration rate. The investigation in practical 10 can be modified so that other variables such as temperature and light can be investigated to see how they affect transpiration rate.

Practical 22 – Stomata The structure of stomata can be observed by coating the lower surface of a leaf with clear nail varnish, which is then peeled off and made into a temporary slide for viewing through a microscope. This practical not only investigates stomatal structure but also reinforces microscope skills learnt earlier in the course. Leaves of different plants can be compared so that xerophytic adaptations can be studied.

Practical 24 – Investigate transport of water using celery Transport of water through plant tissue can be investigated using celery and broad bean seedlings. A stick of celery left to stand in a dilute solution coloured dye such as food colouring or ink can be used to show the presence of vascular bundles in roots, stems and petioles. Students can section the stem to show the distribution of the vascular bundles. The veins in the leaves of the celery and bean seedling will also become stained and thus show what happens to the vascular bundles when they enter leaves. This enables students to build up a whole picture of how the water is transported throughout the plant.

Syllabus section H – Gas Exchange

Practical 25 – tidal and vital capacity Tidal and vital capacity can be investigated using spirometer. Schools that do not possess a spirometer can do a simplified version of this experiment by getting students to blow through rubber tubing placed in a 1000 ml measuring cylinder or larger, full of water and inverted into a large bowl. Measurements of expired air can be read off directly from the measuring cylinder.

Practical 26 – Effect of nicotine on heart rate of Daphnia The effect of nicotine on the heart rate in daphnia can be investigated to show how different drugs can affect metabolism.

To make the nicotine solution, remove tobacco from a pack of 20 cigarettes and mix it with a beaker of water. Cover and allow to stand for at least 12 hours. Drain the supernatant liquid and mix one part solution to eight parts water. Different concentrations may be used to investigate the effect of concentration on heart rate.

Practical 11 – Investigating the role of carbon dioxide in living organisms

Learning outcomes (k) use the knowledge gained in this section in new situations or to solve related problems

Practical skills: Manipulation, observation, interpretation and planning.

This practical investigates the carbon dioxide levels produced by living organisms using bicarbonate indicator solution. The students then use this information to plan an investigation to determine the unfamiliar interaction between respiration (producing carbon dioxide at a constant rate irrespective of light intensity) and photosynthesis (using carbon dioxide – dependent on light) in plants.

Full details of this practical are provided.
Syllabus Section I – Infectious disease

Practical 27 – Bacteria and viruses There are various ways of making practical material on these accessible, but the most satisfactory will be to use electron micrographs (downloaded from the web or in books) to make observations and measurements.

Syllabus Section J – Immunity

Practical 28 – Blood cell smear – this must be done using prepared slides. This is an important practical as the cells are small and not very easy to see, so they make an excellent context for experienced students to finely tune their skills of using apparatus, observation and drawing.

Syllabus Section K – Ecology

Practical 29 – food chains and food webs – students should have the opportunity to go out into the school grounds or a suitable local environment in which are found plants, animals that feed on the plants and predators (this might include trees, aphids and carnivorous beetles, or herbaceous plants, snails and snail-eating birds). Students should be enabled to identify, count (per unit area) and estimate biomass, preparatory to making food webs and attempting to make a simple estimated pyramid of biomass.

Practical 30 – nutrient cycling – students should set up small, sealed jars containing a few grams of soil, pond water and a small amount of shredded paper. These should be left in the light and observed for a few weeks. There will be a succession of changes in the microorganisms growing in the jars, but eventually it will settle down to a constant population of various photosynthetic and other species, demonstrating that they are recycling the limited amount of nutrients present.